Article ID Journal Published Year Pages File Type
5005842 Materials Science in Semiconductor Processing 2017 10 Pages PDF
Abstract
Copper (Cu) doped zinc oxide (ZnO) thin films were successfully prepared by a simple sol-gel spin coating technique. The effect of Cu doping on the structural, morphology, compositional, microstructural, optical, electrical and H2S gas sensing properties of the films were investigated by using XRD, FESEM, EDS, FTIR, XPS, Raman, HRTEM, and UV-vis techniques. XRD analysis shows that the films are nanocrystalline zinc oxide with the hexagonal wurtzite structure and FESEM result shows a porous structured morphology. The gas response of Cu-doped ZnO thin films was measured by the variation in the electrical resistance of the film, in the absence and presence of H2S gas. The gas response in relation to operating temperature, Cu doping concentration, and the H2S gas concentration has been systematically investigated. The maximum H2S gas response was achieved for 3 at% Cu-doped ZnO thin film for 50 ppm gas concentration, at 250 °C operating temperature.
Related Topics
Physical Sciences and Engineering Engineering Electrical and Electronic Engineering
Authors
, ,