Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5005984 | Materials Science in Semiconductor Processing | 2017 | 6 Pages |
Abstract
In this paper, the thermoelectric properties of ZnO doped with Al, Bi and Sn were investigated by combining experimental and theoretical methods. The average Seebeck coefficient of Bi doped ZnO over the measured temperature range is improved from â90 to â497 μV/K. However, segregation of Bi2O3 in ZnO:Bi sample, confirmed by FESEM, lead to enormous grain growth and low electrical conductivity, which makes Bi is not a good dopant to improve ZT value of ZnO. As a 4+ valence cation, Sn doping actually show an increase in carrier concentration to 1020 cmâ3, further enhancing the electrical conductivity. Unfortunately, the Seebeck coefficient of ZnO:Sn samples is even lower than pure ZnO sample, which lead to a low ZT value. As for ZnO:Al sample, with nearly no change in lattice thermal conductivity, electrical conductivity and Seebeck coefficient were both enhanced. Threefold enhancement in ZT value has been achieved in ZnO:Al sample at 760 °C compared with pure ZnO.
Keywords
Related Topics
Physical Sciences and Engineering
Engineering
Electrical and Electronic Engineering
Authors
Weibao Guan, Liying Zhang, Chao Wang, Yuanxu Wang,