Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5006682 | Measurement | 2017 | 16 Pages |
Abstract
Highway assets, including traffic signs and signals, light poles, guardrails, and culverts, are essential components of transportation networks. They guide, warn, and protect drivers and regulate traffic. To manage and maintain the regular operation of the highway system, state departments of transportation (DOTs) need reliable and up-to-date information about the location and condition of highway features. Various techniques have been employed to collect highway inventory data. These techniques range from the simplest manual inventory method to methods that involve advanced technology, such as light detection and ranging (LiDAR). The focus of this paper is to analyze the capability and strengths of airborne LiDAR in highway inventory data collection. A field experiment was conducted to collect airborne LiDAR data, and an ArcGIS-based workflow was proposed to process the data. The results demonstrate the effectiveness of the proposed workflow as well as the feasibility and high efficiency of airborne LiDAR for highway inventory data collection.
Related Topics
Physical Sciences and Engineering
Engineering
Control and Systems Engineering
Authors
Yi He, Ziqi Song, Zhaocai Liu,