Article ID Journal Published Year Pages File Type
5007830 Optics and Lasers in Engineering 2017 14 Pages PDF
Abstract

•An asymmetric integral imaging system for pickup and 3-D display of far outdoor scenes is proposed.•A dynamic pixel mapping (DPM) algorithm to transform the picked-up EIs into those for the display.•Successful experiments confirm that the proposed system can provide 3-D video images in 25[fps].

A new asymmetric integral imaging (AII) system for real-time pickup and three-dimensional (3-D) display of far outdoor scenes based on dynamic-pixel-mapping (DPM) is proposed. DPM is a digital process to transform the elemental images captured with a lens array into the perspective-variant object images (POIs) whose structures are matched with those of display lenses, where the orders of pixels in each POI are reversely mapped, and then capture a set of virtual elemental images (EIs) at the specific depth planes from the back-propagated POIs. This DPM enables an asymmetrical use of pickup and display lens arrays, allowing the long-ranged pickup of far outdoor scenes and their resolution-enhanced 3-D reconstruction. Experiments with a pair of pickup and display lens arrays whose pitches and focal lengths are given by 7.5 mm, 30 mm and 1.2 mm, 8 mm, respectively, show that the effective pickup-range and resolution of the proposed system have been increased up to 6 m and 1600×1600 pixels, respectively, from 0.064 m and 480×480 pixels of the conventional systems employing the same pickup and display lens arrays. In addition, experiments with an implemented test bed confirms that the proposed system can provide real-time 3-D images in 25 frames per second.

Related Topics
Physical Sciences and Engineering Engineering Electrical and Electronic Engineering
Authors
, , , ,