Article ID Journal Published Year Pages File Type
5010256 Solid-State Electronics 2017 5 Pages PDF
Abstract
In this paper, we demonstrate high performance GaN-based Schottky-barrier ultraviolet (UV) photodetectors with graded doping prepared on patterned sapphire substrates. The fabricated devices exhibit an extremely low dark current density of ∼1.3 × 10−8 A/cm2 under −5 V bias, a large UV-to-visible light rejection ratio of ∼4.2 × 103, and a peak external quantum efficiency of ∼50.7% at zero bias. Even in the deeper 250-360 nm range, the average external quantum efficiency still remains ∼40%. From the transient response characteristics, the average rising and falling time constants are estimated ∼115 μs and 120 μs, respectively, showing a good electrical and thermal reliability. The specific detectivities D∗, limited by the thermal equilibrium noise and the low-frequency 1/f noise, are derived ∼5.5 × 1013 cm Hz1/2/W (at 0 V) and ∼2.68 × 1010 cm Hz1/2 W−1 (at −5 V), respectively.
Related Topics
Physical Sciences and Engineering Engineering Electrical and Electronic Engineering
Authors
, , , , , , ,