Article ID Journal Published Year Pages File Type
5010378 Solid-State Electronics 2017 5 Pages PDF
Abstract
The anisotropic carrier trapping behaviors was demonstrated for ambipolar tin monoxide (SnO) thin-film transistors (TFTs). On one hand, the TFTs exhibited good stability with almost no changes in transfer characteristics under negative gate-bias stress (NGBS). On the other, under positive gate-bias stress (PGBS), the transfer curves presented parallel and positive shift with no degradation in field-effect mobility and subthreshold voltage swing. The stress-time evolution of the turn-on voltage shift, induced by different positive stress voltages and temperatures, could be described by the stretched exponential model. The relaxation time was extracted to be 1.6 × 104 s at room temperature with activation energy of 0.43 eV, indicating that the ambipolar SnO TFTs under PGBS approach the stability of amorphous indium-gallium-zinc oxide based TFTs.
Keywords
Related Topics
Physical Sciences and Engineering Engineering Electrical and Electronic Engineering
Authors
, , ,