Article ID Journal Published Year Pages File Type
5011051 Applied Acoustics 2017 6 Pages PDF
Abstract
Because microperforated panels (MPPs), which can be made from various materials, provide wide-band sound absorption, they are recognized as one of the next-generation absorption materials. Although MPPs are typically placed in front of rigid walls, MPP space sound absorbers without a backing structure, including three-dimensional cylindrical MPP space absorbers (CMSAs) and rectangular MPP space absorbers (RMSAs), are proposed to extend their design flexibility and easy-to-use properties. On the other hand, improving the absorption performance by filling the back cavity of typical MPP absorbers with porous materials has been shown theoretically, and three-dimensional MPP space absorbers should display similar improvements. Herein the effects of porous materials inserted into the cavities of CMSAs and RMSAs are experimentally investigated and a numerical prediction method using the two-dimensional boundary element method is proposed. Consequently, CMSAs and RMSAs with improved absorption performances are illustrated based on the experimental results, and the applicability of the proposed prediction method as a design tool is confirmed by comparing the experimental and numerical results.
Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , , , ,