Article ID Journal Published Year Pages File Type
5011063 Applied Acoustics 2017 5 Pages PDF
Abstract

The in situ measurement of the airborne sound insulation, as outlined in EN 1793-6:2012, is becoming a common means of quantifying the performance of road traffic noise reducing devices. Newly installed products can be tested to reveal any construction defects and periodic testing can help to identify long term weaknesses in a design. The method permits measurements to be conducted in the presence of background noise from traffic, through the use of impulse response measurement techniques, and is sensitive to sound leakage. Factors influencing the measured airborne sound insulation are discussed, with reference to measurements conducted on a range of traffic noise barriers located around Auckland, New Zealand. These include the influence of sound leakage in the form of hidden defects and visible air gaps, signal-to-noise ratio, and noise barrier height. The measurement results are found to be influenced by the presence of hidden defects and small air gaps, with larger air gaps making the choice of measurement position critical. A signal-to-noise ratio calculation method is proposed, and is used to show how the calculated airborne sound insulation varies with signal-to-noise ratio. It is shown that the measurement results are influenced by barrier height, through the need for reduced length Adrienne temporal windows to remove the diffraction components, prohibiting the direct comparison of results from noise barriers with differing heights.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , ,