Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5011296 | Communications in Nonlinear Science and Numerical Simulation | 2017 | 23 Pages |
Abstract
In this paper, a discrete rational fration population model with the Dirichlet boundary conditions will be considered. According to the discrete maximum principle and the sub- and supper-solution method, the necessary and sufficient conditions of uniqueness and existence of positive steady state solutions will be obtained. In addition, the dynamical behavior of a special two patch metapopulation model is investigated by using the bifurcation method, the center manifold theory, the bifurcation diagrams and the largest Lyapunov exponent. The results show that there exist the pitchfork, the flip bifurcations, and the chaos. Clearly, these phenomena are caused by the simple diffusion. The theoretical analysis of chaos is very imortant, unfortunately, there is not any results in this hand. However, some open problems are given.
Related Topics
Physical Sciences and Engineering
Engineering
Mechanical Engineering
Authors
Lili Meng, Xinfu Li, Guang Zhang,