Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5011488 | Communications in Nonlinear Science and Numerical Simulation | 2017 | 30 Pages |
Abstract
We present a three-dimensional model of rain-induced landslides, based on cohesive spherical particles. The rainwater infiltration into the soil follows either the fractional or the fractal diffusion equations. We analytically solve the fractal partial differential equation (PDE) for diffusion with particular boundary conditions to simulate a rainfall event. We developed a numerical integration scheme for the PDE, compared with the analytical solution. We adapt the fractal diffusion equation obtaining the gravimetric water content that we use as input of a triggering scheme based on Mohr-Coulomb limit-equilibrium criterion. This triggering is then complemented by a standard molecular dynamics algorithm, with an interaction force inspired by the Lennard-Jones potential, to update the positions and velocities of particles. We present our results for homogeneous and heterogeneous systems, i.e., systems composed by particles with same or different radius, respectively. Interestingly, in the heterogeneous case, we observe segregation effects due to the different volume of the particles. Finally, we analyze the parameter sensibility both for the triggering and the propagation phases. Our simulations confirm the results of a previous two-dimensional model and therefore the feasible applicability to real cases.
Related Topics
Physical Sciences and Engineering
Engineering
Mechanical Engineering
Authors
Gianluca Martelloni, Franco Bagnoli, Alessio Guarino,