Article ID Journal Published Year Pages File Type
5011728 Computers & Fluids 2017 18 Pages PDF
Abstract
A closure model is presented to compute turbulent flow over and through porous media. The model is based on the Darcy and Forchheimer term which are also applied to a Reynolds-stress turbulence model. The implementation of the model into a flow solver is validated with wind-tunnel experiments of a 2D-wing with a porous trailing edge. Pressure and PIV measurements are performed for the determination of integral force coefficients and the understanding of the detailed flow field. The measurement data are discussed and compared with the results of the numerical computations. The simulations match most of the experiments very well and reproduce the flow phenomena correctly. The remaining differences are studied in detail by parameter variations in order to understand the flow phenomena. The results yield confidence for using the closure model with minor modifications for more general applications.
Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
, ,