Article ID Journal Published Year Pages File Type
5013797 Engineering Fracture Mechanics 2017 12 Pages PDF
Abstract
A stretch intensity factor for filled and unfilled elastomers is introduced for different mixtures. This stretch intensity factor allows for prediction of the analytically evaluated energy release rate for a cracked sample under uniaxial tension. Considering the opening mode from fracture mechanics (mode I) was investigated. The continuum mechanical derivations are based on non-linear hyperelastic material behaviour, where the energy release rate is evaluated through a closed path integral very near to the crack tip. Here, the integrand includes asymptotic solution for strain, stress and energy density using the Ogden model. The decisive advantage of this method is to predict well the critical tearing energy values by the crack growth using the analytical energy release rate term. In this work the Mullins effect is not considered, since the cracked samples are tested without any preconditioning.
Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , , , ,