Article ID Journal Published Year Pages File Type
5013924 Engineering Fracture Mechanics 2017 25 Pages PDF
Abstract
In the simulation of the ductile fracture process in a low ductility aluminum alloy, the limitations of the current implementation of a stress-state dependent cohesive model are identified. Ductile fracture data was generated at moderate triaxiality with experiments on a range of notched bars while at high triaxiality in growth of a pre-existing mode-I crack in compact test specimens. In the corresponding finite element analysis, cohesive elements obeying a stress-state dependent cohesive law were introduced in the plane where material separation was expected to occur. By recognizing that the effect of model parameters is decoupled in fracture at moderate triaxiality, a procedure is outlined to determine the unique combination of model parameters that is shown to reproduce the experimental data for the entire range of triaxiality well. It is argued that the necessity of a plane strain core and its thickness is largely driven by the extent to which plastic deformation spreads during the growth of crack.
Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, ,