Article ID Journal Published Year Pages File Type
5015142 International Journal of Fatigue 2017 14 Pages PDF
Abstract
In the present paper, a novel approach to the calibration issue is proposed by employing Bayesian filtering and smoothing. A probabilistic state space model incorporating prior information about the damage extent and calibration parameters as well as process describing models is defined and subsequently used to infer the damage extent of fatigue-tested specimens from potential drop measurements. First, the obtained results in the form of joint conditional posterior distribution functions are exploited to facilitate an evaluation of a direct model calibration on the one hand and direct damage extent estimation on the other hand given persistent uncertainties. In a further step, the inferred damage extent estimations and associated uncertainties are propagated in time as to allow an assessment of decision-making-feasibility within the extended scope of structural health monitoring and damage prognosis. A thorough performance analysis in the light of actual damage extend data is undertaken, revealing accurate results.
Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , ,