Article ID Journal Published Year Pages File Type
5015155 International Journal of Fatigue 2017 15 Pages PDF
Abstract
The crack growth behaviour of Direct Aged Inconel 718 was studied at 550 °C. Experiments were carried out under pure fatigue cycles, hold-time cycles of different durations and a mix of both. Hold-time cycles were systematically associated with complex crack front morphologies. A new numerical approach was developed to assess the effect of crack front morphology on the direct current potential drop technique, mechanical fields at the crack tip and ultimately, measured crack growth rates. Using this approach, a clear relation was established between crack front morphology and its evolution, and the crack growth behaviour under hold-time conditions. Complex crack front morphologies are demonstrated to be responsible for increased crack growth rates. From this, a crack growth mechanism under hold-time conditions is proposed. Finally, the numerical framework here presented is to be considered as a new, easily reproducible, way to properly analyse experimental data when dealing with complex loading cycles and complex crack front morphologies.
Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , , , ,