Article ID Journal Published Year Pages File Type
5015493 International Journal of Impact Engineering 2017 16 Pages PDF
Abstract
Finite element analysis of concrete-to-rebar bond specimens under dynamic loading was conducted. This involved detailed modelling of the reinforcing steel bar ribs and the concrete keys in between. The modelling aimed to realise insight into the local structural phenomena and create a solid base for the prediction of bond behaviour under varying conditions. The analysis was performed in 3D with the explicit finite element code LS-Dyna. The proposed Soil and Foam Failure material model for concrete is described and definition of the material parameters is discussed. The numerical results are compared to experimental data obtained during dynamic push-in bond experiments carried out at the Technische Universität Dresden. Strain signals, slip measurements, bond stresses and crack patterns are analysed. The obtained signals are decomposed based on fundamentals of wave propagation. Significant influential factors like the experimental set-up geometry are hence identified. The capability of the model to predict key aspects of bond behaviour under dynamic loading is demonstrated and its applicability for future parametric studies is highlighted.
Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , ,