Article ID Journal Published Year Pages File Type
5016936 International Journal of Refrigeration 2017 12 Pages PDF
Abstract
Most of the previous research on flash gas bypass (FGB) focused on performance improvement in steady state and demonstrated that compared to direct expansion mode (DX), FGB mode have better performance. However, the control strategy of flash gas bypass system and dynamic behavior during start-ups and transients were not yet clearly defined and investigated. In this paper, a novel control strategy has been proposed for an automobile air conditioning system operating in flash gas bypass mode with R134a as the refrigerant. The proposed control strategy utilized an electronic expansion valve (EV) for the control of subcooling from condenser outlet and a bypass valve (BV) for superheat from compressor inlet. Both start-up and transient system behaviors were studied. The experimental results showed that the proposed cycle control strategy was found to be able to provide reliable control to the system. In addition, proper sizing of bypass valve and flash gas bypass tank have also been studied.
Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, ,