Article ID Journal Published Year Pages File Type
5017300 International Journal of Refrigeration 2017 38 Pages PDF
Abstract
A novel integration of a trans-critical CO2 refrigeration cycle with thermoelectric modules in the gas cooler and sub-cooler is presented, wherein a two-stage thermoelectric generator (TEG) produces power from the waste heat of gas cooler, which is a considerable amount of required power in two-stage thermoelectric cooler (TEC) to sub-cool the refrigerant before expansion device. Mathematical simulation of TEG and TEC as well as energy and exergy based thermodynamic analysis of the proposed system is performed, and the effects of some important parameters on the system performance are investigated. A comparison is carried out between the proposed system and the simple CO2 refrigeration cycle, indicating that the proposed configuration improves the coefficient of performance (COP) about 19%. Also, it is observed that the TEC and TEG have better performance in a two-stage configuration. The parametric study reveals that the new configuration decreases the cycle operation pressure at maximum COP and exergetic efficiency.
Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , ,