Article ID Journal Published Year Pages File Type
5017471 Journal of Fluids and Structures 2017 16 Pages PDF
Abstract
This paper presents a semi-empirical model for vertical VIF on a twin-box deck with and without turbulent wind flow. First, the two existing semi-empirical single-degree-of-freedom (SDOF) VIF models are discussed, and a refined SDOF model for VIF under smooth wind flow is proposed. The proposed SDOF VIF model includes all the non-conservative motion-induced force terms. An approximate analytical solution for the maximum amplitude of VIR is then deduced based on the proposed VIF model. Second, based on quasi-static assumption, the proposed VIF model is further extended to take account of turbulence wind effects by introducing a turbulence-induced positive damping term into the model. Finally, the validity of the proposed VIF model with and without turbulent wind effects is examined using a newly-developed wind tunnel test technique for an elastically-mounted twin-box section model. The comparative results show that the proposed VIF model can effectively predict the maximum VIR of a twin-box deck under different turbulent fields with different structural damping ratios. It is also found that the maximum VIR decreases nonlinearly with the increase of turbulence intensity.
Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , , ,