Article ID Journal Published Year Pages File Type
5018153 Journal of the Mechanics and Physics of Solids 2017 32 Pages PDF
Abstract
We consider a discrete model of a graphene sheet with atomic interactions governed by a harmonic approximation of the 2nd-generation Brenner potential that depends on bond lengths, bond angles, and two types of dihedral angles. A continuum limit is then deduced that fully describes the bending behavior. In particular, we deduce for the first time an analytical expression of the Gaussian stiffness, a scarcely investigated parameter ruling the rippling of graphene, for which contradictory values have been proposed in the literature. We disclose the atomic-scale sources of both bending and Gaussian stiffnesses and provide for them quantitative evaluations.
Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , ,