Article ID Journal Published Year Pages File Type
5018181 Journal of the Mechanics and Physics of Solids 2017 29 Pages PDF
Abstract
With the combined objectives of demonstrating the possible benefits of using ferrofluid particles in lieu of the more conventional iron particles as fillers and gaining insight into recent experimental results, the proposed homogenization-based constitutive model is deployed to generate numerical solutions for boundary-value problems of both fundamental and practical significance: those consisting of magnetorheological elastomer specimens of spherical and cylindrical shape that are immersed in air and subjected to a remotely applied uniform magnetic field. It is found that magnetorheological elastomers filled with ferrofluid particles can exhibit magnetostrictive capabilities far superior to those of magnetorheological elastomers filled with iron particles. The results also reveal that the deformation and magnetic fields are highly heterogenous within the specimens and strongly dependent on the shape of these, specially for magnetorheological elastomers filled with iron particles. From an applications perspective, this evidence makes it plain that attempts at designing magnetrostrictive devices based on magnetorheological elastomers need to be approached, in general, as structural problems, and not simply as materials design problems.
Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , ,