Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5018493 | Mechanics of Materials | 2017 | 58 Pages |
Abstract
This paper investigates the non-linear behaviour of geo-materials both in the reversible and irreversible thermodynamic regimes. Among the common Seth-Hill measures of deformation, we verify that the logarithmic (Hencky) strain produces the closest agreement with Diamond Anvill Cell experimental data obtained for a wide range of minerals. We extend the Eshelby-Hill based self-consistent upscaling of heterogeneous media to the context of logarithmic finite strain. Based on homogenisation, we introduce a novel continuum damage mechanics technique based on self-similar (fractal) distribution of defects and their propagation. The whole framework is implemented numerically using the finite element method with a particular emphasis on material and geometrical non-linearities that are both represented in the proposed integration algorithm. To verify the applicability of the model, we introduce particular examples where solid blocks are subjected to partial/full confinement conditions under force/displacement controlled loading. We solve the problems analytically and numerically and show that the proposed methodologies produce acceptable agreements.
Related Topics
Physical Sciences and Engineering
Engineering
Mechanical Engineering
Authors
A. Karrech, F. Abbassi, H. Basarir, M. Attar,