Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5018728 | Mechanism and Machine Theory | 2018 | 14 Pages |
Abstract
This paper presents the design of an integrated suspension tilting mechanism for narrow tilting vehicles. The challenge in the design of such suspension tilting mechanisms is to allow large suspension travels to generate sufficient tilting angles to balance the vehicle in cornering, while at the same time remain as compact as possible to save the space for passengers and cargos. Existing solutions, which are mostly based on parallel mechanisms, are not space-friendly and add extra weight to the expected compact and light-weighted urban vehicles. This paper firstly examines the feasibility of various automobile suspension mechanisms by considering their complexity and space requirements, and identifies the trailing arm mechanism as a promising solution. Then the kinematic and dynamic properties of the vehicle during large suspension heave motions are examined to establish guidelines for detailed mechanism design. Finally, more detailed constraints and objectives are considered to arrive at an optimal design. Simulation results confirm that the longitudinal movement of the wheel can be utilized to improve vehicle stability.
Related Topics
Physical Sciences and Engineering
Engineering
Industrial and Manufacturing Engineering
Authors
Chen Tang, Ling He, Amir Khajepour,