Article ID Journal Published Year Pages File Type
5019051 Precision Engineering 2017 18 Pages PDF
Abstract
With the development of precision and ultra-precision machining technology, the demand of drive feed system increases. Non-linear friction in a conventional drive feed system (CDFS) feeding at low speed is one of the main factors that lead to the complexity of the feed drive. The CDFS will inevitably enter or approach a non-linear creeping area at extremely low speed. A novel two-axis differential micro-feed system (TDMS) is developed in this paper to overcome the accuracy limitation of CDFS. A dynamic model of TDMS is first established. Then, a distributed component friction parameter identification method using a genetic algorithm (GA) to identify the friction parameters of a TDMS is introduced. A proportional-derivate feed drive position controller with an observer-based friction compensator is implemented to achieve an accurate trajectory tracking performance. Finally, comparative experiments demonstrate the effectiveness of the TDMS in inhibiting the disadvantageous influence of non-linear friction and the validity of the proposed identification method for TDMS.
Related Topics
Physical Sciences and Engineering Engineering Industrial and Manufacturing Engineering
Authors
, , , , ,