Article ID Journal Published Year Pages File Type
5019116 Precision Engineering 2017 13 Pages PDF
Abstract
Low stiffness characteristics limit the application of industrial robots in the field of precision manufacturing. This paper focuses primarily on the stiffness properties of drilling robots by further studying the stiffness ellipsoid model. A Cartesian compliance model is proposed to describe the robot stiffness in Cartesian space. Based on the compliance model, a quantitative evaluation index of the robot's processing performance is defined. By choosing a proper drilling posture, the performance index in the cutting tool direction is optimized. Higher accuracy of the countersink depth and hole axial direction can be guaranteed. From the perspective of the robot processing mechanism, the key role of the per-load pressing force is first indicated. By applying a per-load pressing force, the performance index on the machining plane is enhanced. Hole diameter accuracy is improved significantly. A stiffness improving factor used to evaluate the stiffness promotion degree is also proposed. Finally, experiments were conducted to verify the correctness of the proposed model. Drilling experiments were performed to investigate the effectiveness of the robot processing performance index improving methods The principle of pressing force used in engineering applications is given based on processing parameters.
Related Topics
Physical Sciences and Engineering Engineering Industrial and Manufacturing Engineering
Authors
, , , , ,