Article ID Journal Published Year Pages File Type
50198 Catalysis Communications 2015 5 Pages PDF
Abstract

•Decarboxylation reaction was carried out over unsupported Co–Mo catalysts.•Co/Mo ratio was systematically varied to optimize catalyst.•Co0.5Mo0.5 catalyst exhibits the highest oleic acid conversion and C17 selectivity.•This is due to the highest surface area and easier reducibility of CoMoO4 species.•In addition, catalyst acidity influences decarboxylation reaction.

Hydrodeoxygenation (HDO) processes have been developed to remove the oxygenated compounds in lipids. However, the HDO process consumes excess hydrogen. As opposed to the HDO process, decarboxylation does not require hydrogen. In this study, decarboxylation of oleic acid without hydrogen was carried out over unsupported CoMo catalysts. Unsupported CoMo catalysts were prepared by a co-precipitation method. The Co/Mo ratio was systematically varied to optimize unsupported CoMo catalyst. The catalyst properties were studied using various characterization techniques and related to the activity results in decarboxylation.

Graphical abstractDecarboxylation of oleic acid without hydrogen was carried out over unsupported CoMo catalysts. The Co/Mo ratio was systematically varied to optimize unsupported CoMo catalyst. As a result, Co0.5Mo0.5 catalyst exhibits the highest oleic acid conversion, C17 selectivity, and oxygen removal efficiency. This is correlated with the highest BET surface area and easier reducibility of the Co0.5Mo0.5 catalyst.Figure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemical Engineering Catalysis
Authors
, , , , , , , , , , ,