Article ID Journal Published Year Pages File Type
5020059 Additive Manufacturing 2016 25 Pages PDF
Abstract
Laser-Powder Bed Fusion (L-PBF), an additive manufacturing process, produces a distinctive microstructure that closely resembles the weld metal microstructure but at a much finer scale. The solidification parameters, particularly temperature gradient and solidification rate, are important to study the as-built microstructure. In the present study, a computational framework with meso-scale resolution is developed for L-PBF of InconelĀ® 718 (IN718), a Ni-base superalloy. The framework combines a powder packing model based on Discrete Element Method and a 3-D transient heat and fluid flow simulation. The latter, i.e., the molten pool model, captures the interaction between laser beam and individual powder particles including free surface evolution, surface tension and evaporation. The solidification parameters, calculated from the temperature fields, are used to assess the solidification morphology and grain size using existing theoretical models. The IN718 coupon built by L-PBF are characterized using optical and scanning electron microscopies. The experimental data of molten pool size and solidification microstructure are compared to the corresponding simulation results.
Related Topics
Physical Sciences and Engineering Engineering Industrial and Manufacturing Engineering
Authors
, ,