Article ID Journal Published Year Pages File Type
5020091 Additive Manufacturing 2017 11 Pages PDF
Abstract
In this paper the heat transfer and residual stress evolution in the direct metal laser sintering process of the additive manufacturing of titanium alloy products are studied. A numerical model is developed in a COMSOL multiphysics environment considering the temperature-dependent material properties of TiAl6V4. The thermo-mechanical coupled simulation is performed. 3-D simulation is used to study single-layer laser sintering. A 2-D model is used to study the multi-layer effects of additive manufacturing. The results reveal the behavior of the melt pool size, temperature history, and change of the residual stresses of a single layer and among the multiple layers of the effects of the change of the local base temperature and laser power etc. The result of the simulation provides a better understanding of the complex thermo-mechanical mechanisms of laser sintering additive manufacturing processes.
Related Topics
Physical Sciences and Engineering Engineering Industrial and Manufacturing Engineering
Authors
, , , ,