Article ID Journal Published Year Pages File Type
5021077 Composites Part B: Engineering 2018 10 Pages PDF
Abstract

A gradient-refractive-index radar absorbing structure(GRINRAS) for stealth aircraft is proposed in this paper. It is a layered shell composed of a gradient-refractive-index (GRIN) refractor, an absorber and a reflector. The GRIN refractor consists of the isotropic non-resonant woodpile metamaterials, which was designed according to the permittivity distribution equation of the electromagnetic(EM) black hole to bend and match the waves from the air to the radar absorbing structure. The absorber dissipates the EM waves and transforms them into the heat energy. The reflector reflects the EM waves to the absorber and prevents them from entering the inner space of the structure. A ring and a board GRINRAS were designed, and then fabricated by the three-dimensional (3D) printing process of stereolithography (SL). Simulation and experimental results show that the GRINRASes can control the wave propagation and their absorption capacity is better than −10 dB in the broadband of 12-18 GHz. The GRIN refractor and the absorber have almost equal contributions to the absorption capability. This is the first radar absorbing composite structure composed of the gradient 3D metamaterials. It demonstrates the feasibility of using the metamaterials and 3D printing technology in the innovative radar absorbing structure (RAS) of the stealth aircraft.

Graphical abstractDownload high-res image (639KB)Download full-size image

Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, , , ,