Article ID Journal Published Year Pages File Type
5021609 Composites Part B: Engineering 2017 12 Pages PDF
Abstract
For long fiber biocomposites, instead, the experimental analysis has shown that for a given fiber treatment, the use of the more deformable PLA allows a better exploiting of the fiber properties, i.e. it leads always to more eco-friendly biocomposites with higher mechanical strength. Moreover, the use of the agave marginata permits to obtain biocomposites with strength higher than the biocomposites reinforced with the common agave sisalana (sisal), with improvements until to about 50%; also, the use of fibers extracted by simple leafs pressing, allows the user to obtain high performance renewable biocomposites, characterized by high stiffness and strength comparable with that obtained by using mercerized fibers. Finally, the detailed analysis of the damage mechanisms, performed also by proper 2D and 3D micrographs, has permitted to implement accurate theoretical models that allows the user accurate predictions of the mechanical performance of biocomposites reinforced with short fibers or long fibers.
Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, ,