Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5022165 | Composites Science and Technology | 2017 | 25 Pages |
Abstract
In this paper, a new laminate analogy for progressive damage modeling of two-dimensional randomly oriented short-fiber composites is developed. In the present model, two-dimensional randomly oriented short-fiber composite is replaced by an equivalent laminated composite, which contain several unidirectional layers oriented between 0° to 180°. An incremental algorithm is presented to simulate the stress-strain behavior of composites up to the final failure. In the first step, using the shear-lag theory and the Halpin-Tsai method, the on-axis stiffness and strength of each layer were calculated. Then, using the Tsai-Wu failure criterion, damaged layers were detected and the residual moduli of damaged layers were calculated by a random based approach. After failure of each layer, undamaged layers must sustain more stresses. Therefore, the continuum damage mechanics was used to calculate the effective stress in each load increment. A comparison of results of the present model with experimental data available in the literature shows the capability of the model.
Related Topics
Physical Sciences and Engineering
Engineering
Engineering (General)
Authors
M.M. Shokrieh, H. Moshrefzadeh-Sani,