Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5022302 | Composites Science and Technology | 2017 | 9 Pages |
Abstract
Inspired by the hierarchically ordered structure of natural bones with the integration of outstanding strength and toughness, we made an endeavor to engineer ultra high molecular weight polyethylene (UHMWPE)/hydroxyapatite (HA) biocomposites with bone-like structure. The gradiently oriented architecture is constructed via ingenious control over the flow field during the injection molding. In the outer layer, intense shear induces a plenty of highly oriented UHMWPE lamellae, which mimic the aligned collagen fibers in the natural bone. In the inner layer, chain relaxation gives rise to relatively disordered lamellae, contributing to a tough core that shares the similarity with the soft internal layer of natural bones. Such a unique spatial architecture remarkably strengthens the mechanical performance of structured UHMWPE/HA biocomposites. Strikingly, tensile strength and impact toughness are significantly increased by 170% and 85%, climbing up to 63.4Â MPa and 103.9Â kJ/m2, respectively, which is hardly achieved in the previous studies. Meanwhile, structured UHMWPE/HA exhibits good biocompatibility and bioactivity. Our work offers an efficient, time-saving and scalable approach to fabricate high performance UHMWPE/HA biocomposites, where the simultaneous enhancement of strength and toughness makes the structured UHMWPE/HA a promising candidate of replacements for cortical bones.
Keywords
Related Topics
Physical Sciences and Engineering
Engineering
Engineering (General)
Authors
Yan-Fei Huang, Jia-Zhuang Xu, Dong Zhou, Ling Xu, Baisong Zhao, Zhong-Ming Li,