Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5024647 | Nonlinear Analysis: Theory, Methods & Applications | 2017 | 37 Pages |
Abstract
The famous Fisher-KPP reaction-diffusion model combines linear diffusion with the typical Fisher-KPP reaction term, and appears in a number of relevant applications. It is remarkable as a mathematical model since, in the case of linear diffusion, it possesses a family of travelling waves that describe the asymptotic behaviour of a wide class of solutions 0â¤u(x,t)â¤1 of the problem posed in the real line. The existence of propagation wave with finite speed has been confirmed in the cases of “slow” and “pseudo-linear” doubly nonlinear diffusion too, see Audrito and Vázquez (2016). We investigate here the corresponding theory with “fast” doubly nonlinear diffusion and we find that general solutions show a non-TW asymptotic behaviour, and exponential propagation in space for large times. Finally, we prove precise bounds for the level sets of general solutions, even when we work in with spacial dimension Nâ¥1. In particular, taking spatial logarithmic scale, we show that the location of the positive level sets is approximately linear for large times. This represents a strong departure from the linear case, in which the location of the level sets is not purely linear, but presents the celebrated logarithmic deviation for large times.
Related Topics
Physical Sciences and Engineering
Engineering
Engineering (General)
Authors
Alessandro Audrito, Juan Luis Vázquez,