Article ID Journal Published Year Pages File Type
5024692 Nonlinear Analysis: Theory, Methods & Applications 2017 10 Pages PDF
Abstract
In this paper we study the behavior as p→∞ of solutions up,q to −Δpu−Δqu=0 in a bounded smooth domain Ω with a Lipschitz Dirichlet boundary datum u=g on ∂Ω. We find that there is a uniform limit of a subsequence of solutions, that is, there is pj→∞ such that upj,q→u∞ uniformly in Ω¯ and we prove that this limit u∞ is a solution to a variational problem, that, when the Lipschitz constant of the boundary datum is less than or equal to one, is given by the minimization of the Lq-norm of the gradient with a pointwise constraint on the gradient. In addition we show that the limit is a viscosity solution to a limit PDE problem that involves the q-Laplacian and the ∞-Laplacian.
Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, ,