Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5024752 | Nonlinear Analysis: Theory, Methods & Applications | 2017 | 16 Pages |
Abstract
In this paper, we study local well-posedness for the Navier-Stokes equations (NSE) with arbitrary initial data in homogeneous Sobolev-Lorentz spaces HÌLq,rs(Rd):=(âÎ)âs/2Lq,r for dâ¥2,q>1,sâ¥0, 1â¤râ¤â, and dqâ1â¤sd,r=q,s=0 (see Cannone (1995), Cannone and Meyer (1995)), for q=r=2,d2â1
Related Topics
Physical Sciences and Engineering
Engineering
Engineering (General)
Authors
D.Q. Khai, N.M. Tri,