Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5024755 | Nonlinear Analysis: Theory, Methods & Applications | 2017 | 12 Pages |
Abstract
In this work, we consider a nonlocal Fisher-KPP reaction-diffusion problem with Neumann boundary condition and nonnegative initial data in a bounded domain in Rn(nâ¥1), with reaction term uα(1âm(t)), where m(t) is the total mass at time t. With the help of Pohožaev's identity, the non-existence of nontrivial stationary solutions with Dirichlet boundary conditions is being shown. When αâ¥1 and the initial mass is greater than or equal to one, the problem has nonnegative classical solutions. While if the initial mass is less than one, then the problem admits global solutions for n=1,2 with any 1â¤Î±<2 or nâ¥3 with any 1â¤Î±<1+2/n. Moreover, the asymptotic convergence to the solution of the heat equation is proved.
Related Topics
Physical Sciences and Engineering
Engineering
Engineering (General)
Authors
Shen Bian, Li Chen, Evangelos A. Latos,