Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5024797 | Nonlinear Analysis: Theory, Methods & Applications | 2017 | 18 Pages |
Abstract
A homeomorphism U of the unit disk DâR2, U=(u1,u2):Dâ¶ontoD is a quasiharmonic map, if uiâWloc1,1, i=1,2 are solutions to the system (0.1){divB(y)âu1=0  a.e. in DdivB(y)âu2=0  a.e. in D for a symmetric degenerate elliptic conductivity B=B(y) i.e. (0.2)â£Î¾â£2H(y)â¤ãB(y)ξ,ξãâ¤H(y)â£Î¾â£2  a.e. in yâDâξâR2 where H:Dâ¶onto[1,â[ is measurable. A sufficient condition that the Sobolev homeomorphism UâWloc1,1 is a quasiharmonic map is that Uâ1âWloc1,1. This condition is not necessary because we construct a quasiharmonic map U such that Uâ1âBVâWloc1,1 (see Theorem 1.1 ).
Keywords
Related Topics
Physical Sciences and Engineering
Engineering
Engineering (General)
Authors
Luigi D'Onofrio, Carlo Sbordone, Roberta Schiattarella,