Article ID Journal Published Year Pages File Type
5029384 Procedia Engineering 2016 4 Pages PDF
Abstract
In order to enable local functionalisation of label-free optical waveguide biosensors in a cost effective mass-fabrication compatible manner, we investigate surface modification employing inkjet printing of a) functional polymers (biotin-modified polyethyleneimine (PEI-B)) to implement high receptor densities at the surface and b) UV-curable benzophenone dextran (benzo-dextran) to form a voluminous porous hydrogel matrix. The combination of these approaches on a single chip is promising for the detection of biomolecules. We evaluate these functional polymers and hydrogels on an integrated four-channel silicon nitride (Si3N4) waveguide based Mach-Zehnder interferometric (MZI) sensor platform operating at a wavelength of 850nm (TM-Mode).
Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, , , , , , , , ,