Article ID Journal Published Year Pages File Type
5029696 Procedia Engineering 2016 13 Pages PDF
Abstract

This paper proposes a methodology that employs an experimental apparatus that reproduces, in pre-impregnated and cured out-of-autoclave Glass Fiber Reinforced Polymer (GFRP) panels, the phenomenon of slamming or impact on the bottom of a high-speed boat during planing. The pressure limits in the simulation are defined by employing a finite element model (FEM) that evaluates the forces applied by the cam that hits the panels in the apparatus via microdeformations obtained in the simulation. The methodology requires that various impact series be performed at different energies and that the evolution of the damage be followed via immersion ultrasound inspection to quantify how the material behaves, in addition to evaluating the delamination process via penetrating dyes using UV radiation. Slamming impacts were performed on the order of 105, and the micromechanisms of interlaminar and intralaminar damage propagation were observed with scanning electron microscopy (SEM). The results were analyzed by correlating them with pressure, deformation, impact energy, and applied cycles, in addition to conducting compression experiments after impact to relate the material damage with the residual strength of the impacted panels.

Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, , , , ,