Article ID Journal Published Year Pages File Type
5030908 Biosensors and Bioelectronics 2017 6 Pages PDF
Abstract
Development of ultrasensitive method for Hg2+ analysis is important for human health protection and environment monitoring. In this work, we present a highly sensitive and selective electrochemiluminescence (ECL) assay in a “turn-on” mode for the detection of Hg2+ through selective assembly of gold nanoparticles (AuNPs) on the surface of indium tin oxide (ITO) electrode. In the absence of Hg2+, the nonthiolated ssDNA could protected AuNPs against its assembly on ITO surface, producing rather low ECL emission for Ru(bpy)32+/TPA system. Conversely, binding of Hg2+ with the Hg2+-specific oligonucleotide through thymine-Hg2+-thymine coordination formed the double-stranded structure, which could not effectively adsorb to AuNPs in solution. The assembly of free-state AuNPs is achieved, which well preserves electronical conductivity. The presence of AuNPs can catalyze the electro-oxidation of TPA, producing significantly enhanced ECL signal. Through detecting the ECL signal mediated by assembly of AuNPs, the proposed method was able to ensure substantial signal amplification and a low background. It was demonstrated that the ECL intensity was correlated with the ssDNA-based recognition reaction, enabling quantitative analysis of Hg2+ over the range of 8 pM to 2 nM, with a detection limit of 2 pM. ECL intensity of the system were extremely specific for Hg2+ even in the presence of 1000-fold higher concentrations of other metal ions. Analytical results of Hg2+ spiked into water samples by the proposed ECL method were in good agreement with that obtained by atomic fluorescent spectrometry or mass spectrometry data.
Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , ,