Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5031041 | Biosensors and Bioelectronics | 2017 | 23 Pages |
Abstract
In this research, we found that the peroxidase-like activities of noncovalent DNA-Pt hybrid nanoparticles could be obviously blocked, when Pt nanoparticles (PtNPs) were synthesized in situ using DNA as a template. Moreover, this self-assembled synthetic process was very convenient and rapid (within few mintues), and the inhibition mediated by DNA was also very effective. First, by the paper-based analytical device (PAD) we found the catalytic activities of DNA-Pt hybrid nanoparticles exhibited a linear response to the concentration of DNA in the range from 0.0075 to 0.25 µM. Then, with the magnetic bead isolated system and target DNA-induced hybridization chain reaction (HCR), we realized the specific target DNA analysis with a low detection of 0.228 nM, and demonstrated its effectivity in distinguishing the target DNA from other interferences. To our knowledge, this is the first report that used the nanoassembly between DNA and PtNPs for colorimetric detection of nucleic acids, which was based on DNA-mediated inhibition of catalytic activities of platinum nanoparticles. The results may be useful for understanding the interactions between DNA and metal nanoparticles, and for development of other convenient and effective analytical strategies.
Keywords
Related Topics
Physical Sciences and Engineering
Chemistry
Analytical Chemistry
Authors
Weiwei Chen, Xueen Fang, Hua Li, Hongmei Cao, Jilie Kong,