Article ID Journal Published Year Pages File Type
5031373 Biosensors and Bioelectronics 2018 8 Pages PDF
Abstract

•Chitosan-nickel film based interferometric sensor for histidine tagged proteins.•Protein of interest hexa-histidine tagged microcin, a bacteriocin.•Microcin detection sensitivity-0.0308 nm/(ng/ml), detection limit-0.8368 ng/ml.•The sensor exhibits a quick response of around 150 s.

An interferometric fiber sensor for detection of hexa-histidine tagged microcin (His-MccS) is reported and experimentally demonstrated. This intermodal fiber sensor is implemented by a no-core fiber (NCF) functionalized with chitosan (CS)-nickel (Ni) film for direct detection of small peptide: microcin. The fiber intermodal sensor relies on the refractive index modulations due to selective adsorption event at the chitosan (CS)-nickel (Ni) film. Owing to the strong affinity between Ni2+ ions and histidine, the immobilized Ni2+ ions in the chitosan film were utilized as binding agents for the direct detection of hexa-histidine tagged microcin. A comparative study in relation to different target size was conducted: full proteins trypsin, bovine serum albumin (BSA) and human serum albumin (HSA), with high histidine content on their surface and His-MccS (peptide, 11.6 kDa), have been employed for sensor evaluation. Results have shown selectivity for His-MccS relative to trypsin, BSA and HSA. The most telling contribution of this study is the fast detection of small biomolecule His-MccS compared to standard detection procedures like SDS-PAGE and western blot. The proposed sensor exhibits His-MccS detection sensitivity of 0.0308 nm/(ng/ml) in the range of (0-78) ng/ml with concentration detection limit of 0.8368 ng/ml.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , , ,