Article ID Journal Published Year Pages File Type
5031623 Biosensors and Bioelectronics 2017 9 Pages PDF
Abstract
Wound infections are a critical healthcare concern worldwide. Rapid and effective antibiotic treatments that can mitigate infection severity and prevent the spread of antibiotic resistance are contingent upon timely infection detection. In this work, dual electrochemical pH and cell-attachment sensor arrays were developed for the real-time spatial and temporal monitoring of potential wound infections. Biocompatible polymeric device coatings were integrated to stabilize the sensors and promote bacteria attachment while preventing non-specific cell and protein fouling. High sensitivity (bacteria concentration of 102 colony forming units (CFU)/mL and −88.1±6.3 mV/pH over a pH range of 1-13) and stability over 14 days were achieved without the addition of biological recognition elements. The dual sensor array was demonstrated to successfully monitor the growth of both gram-positive (Staphylococcus aureus and Streptococcus pyogenes) and gram-negative bacteria (Pseudomonas aeruginosa and Escherichia coli) over time through lag and log growth phases and following antibiotic administration and in simulated shallow wounds conditions. The versatile fabrication methods utilized in sensor development, superior sensitivity, prolonged stability, and lack of non-specific sensor fouling may enable long-term in situ sensor array operation in low resource settings.
Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, ,