Article ID Journal Published Year Pages File Type
5031723 Biosensors and Bioelectronics 2017 5 Pages PDF
Abstract
An impedimetric HIV-1 gene biosensor has been developed based on graphene-Nafion composite film. The biosensor was fabricated by adsorbing the single-stranded DNA (ssDNA) on graphene-Nafion modified on the surface of glassy carbon electrode via the π-π* stacking interactions. As the negative ssDNA and the steric hindrance, the electron transfer resistance of the electrodes toward the [Fe(CN)6]3−/4 redox couple was difficult, the electron transfer resistance value increased. In the measurement of HIV gene, ssDNA probe with the target DNA to form double-stranded DNA (dsDNA), the formation of helix induced dsDNA to release from the surface of the biosensor. The decrease in the electron transfer resistance was in logarithmically direct proportion to the concentration of HIV-1 gene over a range from 1.0×10−13 to 1.0×10−10 M. The detection limit of this sensor was 2.3×10−14 M. It was found that Nafion could not only stabilize graphene but also increase the dispersion of graphene. The results demonstrate that this graphene-Nafion biosensor possesses good selectivity, acceptable stability and reproducibility for HIV-1 gene detection.
Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , ,