Article ID Journal Published Year Pages File Type
5032651 Medical Engineering & Physics 2017 8 Pages PDF
Abstract
Reconstruction of segmental defects in the mandible remains a challenge for maxillofacial surgery. The use of porous scaffolds is a potential method for repairing these defects. Now, additive manufacturing techniques provide a solution for the fabrication of porous scaffolds with specific geometrical shapes and complex structures. The goal of this study was to design and optimize a three-dimensional tetrahedral titanium scaffold for the reconstruction of mandibular defects. With a fixed strut diameter of 0.45 mm and a mean cell size of 2.2 mm, a tetrahedral structural porous scaffold was designed for a simulated anatomical defect derived from computed tomography (CT) data of a human mandible. An optimization method based on the concept of uniform stress was performed on the initial scaffold to realize a minimal-weight design. Geometric and mechanical comparisons between the initial and optimized scaffold show that the optimized scaffold exhibits a larger porosity, 81.90%, as well as a more homogeneous stress distribution. These results demonstrate that tetrahedral structural titanium scaffolds are feasible structures for repairing mandibular defects, and that the proposed optimization scheme has the ability to produce superior scaffolds for mandibular reconstruction with better stability, higher porosity, and less weight.
Related Topics
Physical Sciences and Engineering Engineering Biomedical Engineering
Authors
, , ,