Article ID Journal Published Year Pages File Type
5040296 Acta Psychologica 2017 8 Pages PDF
Abstract

•Mechanisms of imagery-based implicit sequence learning (ISL) were examined.•ISL via imagery was assessed following training blocks with varying exposure.•Exposure was modified by reducing total training time and sequence to noise ratio.•Reducing exposure led to decreased ISL through imagery.•Like physical practice, ISL via imagery relies on stimulus-response associations.

Implicit sequence learning (ISL) occurs without conscious awareness and is critical for skill acquisition. The extent to which ISL occurs is a function of exposure (i.e., total training time and/or sequence to noise ratio) to a repeated sequence, and thus the cognitive mechanism underlying ISL is the formation of stimulus-response associations. As the majority of ISL studies employ paradigms whereby individuals unknowingly physically practice a repeated sequence, the cognitive mechanism underlying ISL through motor imagery (MI), the mental rehearsal of movement, remains unknown. This study examined the cognitive mechanisms of MI-based ISL by probing the link between exposure and the resultant ISL. Seventy-two participants underwent MI-based practice of an ISL task following randomization to one of four conditions: 4 training blocks with a high (4-High) or low (4-Low) sequence to noise ratio, or 2 training blocks with a high (2-High) or low (2-Low) sequence to noise ratio. Reaction time differences (dRT) and effect sizes between repeated and random sequences assessed the extent of learning. All groups showed a degree of ISL, yet effect sizes indicated a greater degree of learning in groups with higher exposure (4-Low and 4-High). Findings indicate that the extent to which ISL occurs through MI is impacted by manipulations to total training time and the sequence to noise ratio. Overall, we show that the extent of ISL occurring through MI is a function of exposure, indicating that like physical practice, the cognitive mechanisms of MI-based ISL rely on the formation of stimulus response associations.

Related Topics
Life Sciences Neuroscience Cognitive Neuroscience
Authors
, , , ,