Article ID Journal Published Year Pages File Type
5053617 Economic Modelling 2016 21 Pages PDF
Abstract
The aim of this paper is to propose an empirical strategy that allows the discrimination between true and spurious long memory behaviors. That strategy is based on the comparison between the estimated long memory parameter before and after filtering out the breaks. To date the breaks, we use the probability smoothing of the Markov Switching GARCH model of Haas et al. (2004). Application of this strategy to the crude oil, heating oil, RBOB regular gasoline and the propane futures energy with the one, two, three and four months maturities show strong evidence for the presence of long range dependence in all futures energy prices volatility1 time series. This result of long range dependence in the volatility is confirmed by the superiority of the FIGARCH and FIEGARCH models compared with the Markov switching GARCH models in terms of out-of-sample forecasting and value at risk (VaR) performances. Moreover, we show that the proposed empirical strategy is robust to different data frequency. Practical implications of the results for market participants are proposed and discussed.
Related Topics
Social Sciences and Humanities Economics, Econometrics and Finance Economics and Econometrics
Authors
,