Article ID Journal Published Year Pages File Type
5053857 Economic Modelling 2014 16 Pages PDF
Abstract
We assess the Value-at-Risk (VaR) forecasting performance of recently proposed realized volatility (RV) models combined with alternative parametric and semi-parametric quantile estimation methods. A benchmark inter-daily GJR-GARCH model is also employed. Based on four asset classes, i.e. equity, FOREX, fixed income and commodity, and a turbulent six year out-of-sample period (2007-2013), we find that statistical accuracy and regulatory compliance is essentially improved when we use quantile methods which account for the fat tails and the asymmetry of the innovations distribution. In particular, empirical analysis gives evidence in favor of the skewed student distribution and the Extreme Value Theory (EVT) method. Nonetheless, efficiency of VaR estimates, as defined by the minimization of Basel II capital requirements and its opportunity costs, is reassured only with the use of realized volatility models. Overall, empirical evidence support the use of an asymmetric HAR realized volatility model coupled with the EVT method since it produces statistically accurate VaR forecasts which comply with Basel II accuracy mandates and allows for more efficient capital allocations.
Related Topics
Social Sciences and Humanities Economics, Econometrics and Finance Economics and Econometrics
Authors
, , ,