Article ID Journal Published Year Pages File Type
5072458 Games and Economic Behavior 2010 22 Pages PDF
Abstract
We consider continuous time versions of the fictitious play updating algorithm in an evolutionary environment. We derive two forms of continuous-time limit, both defining approximations to this algorithm. The first has the form of a first-order partial differential equation, which we solve explicitly. The dynamic for a distribution of strategies is also derived, which we show can be written in a form similar to a positive definite dynamic. The asymptotic solution (in the ultra long run) is discussed for 2-player, 2-strategy co-ordination and anti-coordination games, and we show convergence to Nash equilibrium in both cases. The second, and better, approximation is in the form of a diffusion equation. This is considerably more difficult to analyze. However, we derive a formal solution and show that it leads to the same asymptotic limit for the distribution of strategies as the 1st-order approximation for 2-player, 2-strategy anti-coordination games.
Keywords
Related Topics
Social Sciences and Humanities Economics, Econometrics and Finance Economics and Econometrics
Authors
, ,