Article ID Journal Published Year Pages File Type
5076130 Insurance: Mathematics and Economics 2017 7 Pages PDF
Abstract

It is argued that the accuracy of risk aggregation in Solvency II can be improved by updating skewness recursively. A simple scheme based on the log-normal distribution is developed and shown to be superior to the standard formula and to adjustments of the Cornish-Fisher type. The method handles tail-dependence if a simple Monte Carlo step is included. A hierarchical Clayton copula is constructed and used to confirm the accuracy of the log-normal approximation and to demonstrate the importance of including tail-dependence. Arguably a log-normal scheme makes the logic in Solvency II consistent, but many other distributions might be used as vehicle, a topic that may deserve further study.

Related Topics
Physical Sciences and Engineering Mathematics Statistics and Probability
Authors
, ,